直线到直线的距离公式推导过程 直线与直线的距离公式推导过程

综合百科2022-09-07 15:22:10佚名

1、d=|C1-C2|/√(A^2+B^2)。

设两条直线方程为:

Ax+By+C1=0

Ax+By+C2=0

2、点P到直线的距离

由两点间距离公式得:

PQ^2=[(B^2x0-ABy0-AC)/(A^2+B^2)-x0]^2

+[(A^2y0-ABx0-BC)/(A^2+B^2)-y0]^2

=[(-A^2x0-ABy0-AC)/(A^2+B^2)]^2

+[(-ABx0-B^2y0-BC)/(A^2+B^2)]^2

=[A(-By0-C-Ax0)/(A^2+B^2)]^2

+[B(-Ax0-C-By0)/(A^2+B^2)]^2

=A^2(Ax0+By0+C)^2/(A^2+B^2)^2

+B^2(Ax0+By0+C)^2/(A^2+B^2)^2

=(A^2+B^2)(Ax0+By0+C)^2/(A^2+B^2)^2

=(Ax0+By0+C)^2/(A^2+B^2)

所以PQ=|Ax0+By0+C|/√(A^2+B^2),公式得证。

3、两条平行直线间的距离公式及推导过程:

设两平行线是L1:ax+by+c1=0和L2:ax+by+c2=0

在L1上有一点A(m,n)

则am+bn+c1=0

am+bn=-c1

且A到L2距离纪委所求

所以距离d=|am+bn+c2|/√(a2+b2)

=|c2-c1|/√(a2+b2) 。

相关推荐

猜你喜欢

大家正在看